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ABSTRACT

A new method for estimating multivariate autoregressive
(MVAR) models of cortical connectivity from surface EEG or
MEG measurements is presented. Conventional approaches
to this problem first attempt to solve the inverse problem to
estimate cortical signals and then fit an MVAR model to the
estimated signals. Our new approach expresses the measured
data in terms of a hidden state equation describing MVAR
cortical signal evolution and an observation equation that
relates the hidden state to the surface measurements. We
develop an expectation-maximization (EM) algorithm to find
maximum likelihood estimates of the MVAR model parame-
ters. Simulations show that this one-step approach performs
significantly better than the conventional two-step approach
at estimating the cortical signals and detecting functional
connectivity between different cortical regions.

Index Terms— Cortical connectivity, multivariate au-
toregressive model, Expectation-maximization algorithm,
Granger causality, partial directed coherence

1. INTRODUCTION

Multivariable autoregressive (MVAR) models provide a
mechanism for assessing causality in the sense of Granger
[1]. They have been employed to study the functional con-
nectivity of the brain based on invasive recordings [2] and
to model interactions between signals at different scalp mea-
surement locations [3]. Identifying cortical MVAR models
from EEG/MEG data requires estimation of both the cortical
signals and the corresponding model parameters. The con-
ventional approach to this problem is to first obtain estimated
cortical signals by solving the ill-conditioned EEG/MEG in-
verse problem and then fit a MVAR model to the estimated
signals. For example, Hui and Leahy [4] use linearly con-
strained minimum variance beamformers to estimate the cor-
tical signal associated with different regions of interest from
the measured data. Next they solve the Yule-Walker equa-
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tions formed using the estimated cortical signals to obtain the
MVAR model parameters.
In this paper we formulate the cortical connectivity

MVAR model estimation problem for EEG/MEG in terms
of a “hidden” state equation and an observation equation that
relates the hidden state to the surface measurements. The
state equation describes the MVAR model relating the corti-
cal signals and the observation equation relates the measured
data to the hidden cortical signals. We obtain the maximum
likelihood estimates of the MVAR model parameters using an
expectation-maximization (EM) algorithm [5]. Estimates of
cortical signals are obtained from the fixed interval smoother
implemented in the expectation step of the EM algorithm.
We use simulated data to show that this one-step approach
to MVAR model identification results in improved cortical
signal estimates and probability of detecting significant con-
nectivity relative to the two-step approach of [4].
The application of the EM principle to integrated estima-

tion of cortical signals and cortical MVAR models is new to
the best of our knowledge. The improved performance ob-
tained with the EM approach extends the range of cortical
connectivity questions that can be reliably answered using
EEG/MEG measurements.

2. STATE-SPACE MVARMODEL FOR EEG/MEG

Let yj
n and xj

n be the jth epoch of l × 1 EEG/MEG mea-
surement data and m × 1 state vector, respectively, at time
n. The elements of xj

n are the cortical signals associated with
the regions in the MVAR model and may represent dipoles,
multipoles, or cortical patches. We assume that yj

n, n =
1, 2, . . . , N, j = 1, 2, . . . , J are generated by the linear time-
invariant state space system

xj
n =

p∑
r=1

Arx
j
n−r + wj

n (1)

yj
n = Cxj

n + vj
n (2)

where A1,A2, . . . ,Ap are the m × m matrices of MVAR
model coefficients, p is the model order, C is the l × m
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observation matrix, and wj
n and vj

n are the jth epoch of
m × 1 state noise vector and l × 1 observation noise vector
respectively. The m columns of C consist of the forward
solutions that map the cortical signals to the l EEG/MEG
measurements. Define Ã = [A1 A2 . . . Ap] and x̃j

n−1 =
[xj

n−1,x
j
n−2, . . . ,x

j
n−p]

T , so Eq. (1) can be rewritten as

xj
n = Ãx̃j

n−1 + wj
n. (3)

The state noise wj
n and observation noise vj

n are as-
sumed to be zero-mean Gaussian vectors with covariance
E[wj

nwiT

m ] = Qδn,mδj,i and E[vj
nviT

m ] = Rδn,mδj,i. The
m × 1 initial state vector xj

0 is also assumed to be Gaussian
distributed with unknown mean vector μ0 and covariance
matrixΣ0.

2.1. EM Algorithm for MVARModel Estimation

The EM algorithm iteratively computes the ML estimates of
θ = {Ã,Q,R, μ0,Σ0} assuming xj

n, n = 1, 2, . . . , N, j =
1, 2, . . . , J is hidden data. DefineXJ

N = {x1
0, . . . ,x

1
N , . . . ,

xJ
0 , . . . ,xJ

N} as the set of hidden data andYJ
N = {y1

1, . . . ,y
1
N

, . . . ,yJ
1 , . . . ,yJ

N} as the set of observed data. Together XJ
N

and YJ
N form the complete data set. The complete data

likelihood function is given by

p(YJ
N ,XJ

N ; θ) =
J∏

j=1

p(xj
0)

N∏
n=1

p(yj
n|xj

n) p(xj
n|x̃j

n−1) (4)

where the probability densities are given by the following
Gaussian distributions

p(xj
0) ∼ N(μ0,Σ0) (5)

p(yj
n|xj

n) ∼ N(Cxj
n,R) (6)

p(xj
n|x̃j

n−1) ∼ N(Ãx̃j
n−1,Q) (7)

Thus the log-likelihood function for the complete data is

log p(YJ
N ,XJ

N ; θ) =

−J

2
log |Σ0| − 1

2

J∑
j=1

(xj
0 − μ0)T Σ−1

0 (xj
0 − μ0)

−JN

2
log |Q|

−1
2

J∑
j=1

N∑
n=1

(xj
n − Ãx̃j

n−1)
T Q−1(xj

n − Ãx̃j
n−1)

−JN

2
log |R|

−1
2

J∑
j=1

N∑
n=1

(yj
n − Cxj

n)T R−1(yj
n − Cxj

n)

−J(mp + N(mp + l))
2

log 2π (8)

The EM algorithm iteratively maximizes the conditional
expectation of the log-likelihood of the complete data with
respect to the unknown parameters in θ using two steps at
each iteration. Let θ[i] represent the estimates from the ith

iteration. In the expectation or E-step of the (i+1)th iteration
q(θ|θ[i]) is calculated as

q(θ|θ[i]) = E[log p(YJ
N ,XJ

N ;θ)|YJ
N , θ[i]]

= −J

2
log |Σ0|

−1
2
tr

⎧⎨
⎩Σ−1

0

J∑
j=1

(
Pj

0|N

+(xj
0|N − μ0)(x

j
0|N − μ0)T

)
⎫⎬
⎭

−JN

2
log |Q|

−1
2
tr

{
Q−1(D − EÃ

T − ÃE
T

+ ÃFÃ
T
)
}

−JN

2
log |R|

−1
2
tr

⎧⎨
⎩R−1

J∑
j=1

N∑
n=1

[
(yj

n − Cxj
n|N )×

(yj
n − Cxj

n|N )T + CPj
n|NCT

]
⎫⎬
⎭

−J(mp + N(mp + l))
2

log 2π (9)

where xj
n|N is the fixed interval smoother estimate of xj

n,
Pj

n|N is the estimation error covariance matrix, and

D =
J∑

j=1

N∑
n=1

Pj
n|N + xj

n|NxjT

n|N (10)

E =
J∑

j=1

N∑
n=1

Pj
n,n−1|N + xj

n|N x̃jT

n−1|N (11)

F =
J∑

j=1

N∑
n=1

Pj
n−1|N + x̃j

n−1|N x̃jT

n−1|N . (12)

Here Pj
n,n−1|N is the one-lag cross covariance and is also

obtained from the fixed interval smoother [6].
The second step of the EM iteration is the maximization

or M-step. The M-step computes the new estimate θ[i+1] by
maximizing q(θ|θ[i]) with respect to θ to obtain
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Ã[i+1] = EF−1 (13)

Q[i+1] =
1

JN
(D − EF−1ET ) (14)

R[i+1] =
1

JN

J∑
j=1

N∑
n=1

[(yj
n − Cxj

n|N ) ×

(yj
n − Cxj

n|N )T + CPj
n|NCT ] (15)

μ
[i+1]
0 =

1
J

J∑
j=1

xj
0|N (16)

Σ[i+1]
0 =

1
J

J∑
j=1

Pj
0|N . (17)

The E- and M-steps are repeated until the data likelihood con-
verges. This procedure increases likelihood at each iteration
and thus is guaranteed to converge to a local maximum.

2.2. Estimation of Cortical Connectivity

Several connectivity metrics may be extracted from the
MVAR model parameters, including Granger causality [1]
and the directed transfer function (DTF) [3]. In the simula-
tions we use the partial directed coherence (PDC) [2]

PDCij(f) =
|Āij(f)|√∑

k Ā∗
kj(f)Ākj(f)

(18)

where Āij is the ijth element of Ā(f) = I−A(f), ∗ denotes
the complex conjugate operator and

A(f) =
p∑

r=1

Are
−j2πfr. (19)

PDCij(f) represents the influence from the jth cortical sig-
nal to the ith one at frequency f .

2.3. Test for Significance

The method of surrogate data proposed by Theiler et al., [7]
is used to identify thresholds for testing the significance of
the estimated PDC or other connectivity metric. The goal is
to approximate the distribution of the estimated metric when
the true connectivity is zero in order to identify a threshold
resulting in a desired probability of false positive decision.
This is accomplished by randomly perturbing the data to in-
tentionally destroy any connectivity that may be present. The
estimated cortical signals are transformed to the frequency
domain using the FFT, the phase is randomized using inde-
pendent random variables uniformly distributed on [0, 2π],
and an inverse FFT converts the phase randomized cortical
signals back to the time domain. This procedure destroys

any cross-correlation between cortical signals while preserv-
ing the power spectrum of each signal. The resulting MVAR
and PDC estimates correspond to a network of independent
or unconnected cortical regions. The randomization proce-
dure is repeated multiple times to estimate the distribution of
the metric(s) of interest under the assumption of independent
cortical signals.

3. SIMULATION RESULTS

A brain network is simulated based on the Wernicke -
Geschwind model [8] of language processing and speech
production. Dipolar sources are placed in the primary audi-
tory cortex (region 1), Wernicke’s area (region 2), Broca’s
area (region 3), and the motor cortex (region 4). Time se-
ries are generated for each region according to an MVAR
model of order p = 2. The MVAR coefficients are cho-
sen to place a spectral peak near 15 Hz in region 1 and
the following causal influences between regions: 1 → 2,
2 → 3, and 3 → 4. All other causal influences in the
model are set to zero. The state noise covariance is set to
Q = 1

2I. MEG forward solutions for the dipolar sources
are evaluated at 54 sensor locations uniformly distributed
around the head. Observation noise is added to the simu-
lated measured signals to obtain a desired SNR, defined as
tr{∑J

j=1

∑N
n=1(Cxj

n)T (Cxj
n)}/tr{∑J

j=1

∑N
n=1(v

j
n)T (vj

n)}.
The spatial covariance of the noise is chosen to match that
measured from a human subject in the absence of stimulus. A
sampling frequency of 100 Hz is assumed. We set N = 256
and J = 1.
The linearly constrained beamforming approach (LCB)

of [4] is compared to the maximum likelihood based EM
approach (MLEM) described in Section 2 with respect to
estimation of cortical signals and probability of detecting
causal influence between regions. MLEM uses the posterior
mean xj

n|N for the estimated cortical signals. Both LCB and
MLEM assume the correct MVAR model order of p = 2.
Figure 1 depicts the normalized mean square error (NMSE)
associated with LCB and MLEM estimates of the four cor-
tical signals as a function of SNR. The NMSE is calculated
by averaging over 100 independent trials. The MLEM ap-
proach results in consistently lower NMSE than does LCB
over a wide range of SNRs. The mean LCB and MLEM PDC
estimates for SNR = 0 dB are compared to the true PDC in
Figure 2. The mean PDC from MLEM better approximates
the true PDC for the non-zero causal influence (1→ 2, 2→
3 and 3→ 4).
We evaluate the probability of detecting causal influence

by integrating the PDC from 12 Hz to 30 Hz. The value of the
integrated PDC associated with 1→ 2 and 3→ 4 is tested for
significance by comparing it to thresholds chosen to set the
probability of false detection at 0.01, 0.05, 0.1, 0.25, and 0.5.
The thresholds are chosen using 250 surrogate data sets and
the probability of detection is evaluated using 100 indepen-
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Fig. 1. NMSE for the four estimated cortical signals as a func-
tion of SNR. LCB: dashed blue line, MLEM: solid red line.

0 50
0

0.5

1
1 −> 1

0 50
0

0.5

1
2 −> 1

0 50
0

0.5

1
3 −> 1

0 50
0

0.5

1
4 −> 1

0 50
0

0.5

1
1 −> 2

0 50
0

0.5

1
2 −> 2

0 50
0

0.5

1
3 −> 2

0 50
0

0.5

1
4 −> 2

0 50
0

0.5

1
1 −> 3

0 50
0

0.5

1
2 −> 3

0 50
0

0.5

1
3 −> 3

0 50
0

0.5

1
4 −> 3

0 50
0

0.5

1
1 −> 4

freq (Hz)
0 50

0

0.5

1
2 −> 4

freq (Hz)
0 50

0

0.5

1
3 −> 4

freq (Hz)
0 50

0

0.5

1
4 −> 4

freq (Hz)

Fig. 2. True (dash-dotted black line) and mean estimated
PDCs at SNR = 0 dB. LCB: dashed blue line, MLEM: solid
red line.

dent trials. Figure 3 depicts the resulting receiver operating
characteristics (ROCs) for LCB and MLEM at SNR = -15 dB.
Note that the MLEM approach offers improved detection per-
formance at all probabilities of false detection. The difference
is greatest when the true PDC is weakest (3→ 4).

4. SUMMARY

The state/observation equation formulation of MVAR cortical
networks with surface EEG/MEG data leads to an EM algo-
rithm for finding maximum likelihood estimates of MVAR
model parameters and the corresponding cortical signal esti-
mates. Simulations indicate this integrated approach provides
potential performance improvements compared to a two-step
method that first estimates cortical signals and then fits an
MVAR model to the estimated signals.
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Fig. 3. Probability of correct detection vs probability of false
detection for connections 1→ 2 and 3→ 4 at SNR = -15 dB.
LCB: dashed blue line, MLEM: solid red line.

5. REFERENCES

[1] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura,
and S. Bressler, “Beta osciallations in a large-scale senso-
rimotor cortical network: Directional influences revealed
by granger causality,” PNAS, vol. 101, no. 26, pp. 9849–
9854, 2004.

[2] L. Baccala and K. Sameshima, “Partial directed coher-
ence: a new concept in neural structure determination,”
Biological Cybernetics 84, pp. 463–474, 2001.

[3] M. Kaminski, M. Ding, W. Truccolo, and S. Bressler,
“Evaluating causal relations in neural systems: Granger
causality, directed transfer function and statistical assess-
ment of significance,” Biological Cybernetics 85, pp.
145–157, 2001.

[4] H. Hui and R. Leahy, “Linearly constrained MEG beam-
formers for MVARmodeling of cortical interactions,” 3rd
IEEE International Symposium on Biomedical Imaging:
Macro to Nano, pp. 237–240, April 2006.

[5] A. Dempster, N. Laird, and D. Rubin, “Maximum likeli-
hood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society, Series B, vol. 39, no.
1, pp. 1–38, 1977.

[6] H. Rauch, F. Tung, and C. Stiebel, “Maximum likelihood
estimates of linear dynamic systems,” AIAA Journal, vol.
3, pp. 1445–1450, 1965.

[7] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and
D. Farmer, “Testing for nonlinearity in time series: The
method of surrogate data,” Physica D, vol. 58, pp. 77–94,
1992.

[8] M. Bear, B. Connors, and M. Paradiso, Neuroscience:
Exploring the Brain, Williams & Wilkins, Baltimore,
1996.

1238


